Search results

Search for "transition metal dichalcogenide" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • fascinating optical and electronic properties [1]. In particular, the optical absorption, direct bandgap, and broken inversion symmetry of 2D transition-metal dichalcogenide (2D-TMDC) monolayers make these materials promising candidates for light-emitting diodes, photodetectors, field-effect transistors
  • with the SHG and photoluminescence optical images, indicating the relationship between local structure and optical properties of the MoSe2 flake. These results contribute to understand the impacts of local structural properties on the Raman enhancement at the surface of the 2D transition-metal
  • dichalcogenide. Keywords: copper phthalocyanine; local structure; molybdenum diselenide; optical spectroscopy; surface-enhanced Raman spectroscopy; Introduction Two-dimensional (2D) materials have garnered interest for the next generation of optoelectronic and electrochemical devices, mainly owing to their
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • ′ polytype; anisotropy; density functional theory; layered transition metal dichalcogenide crystals; shear modulus; Young’s modulus; Introduction Layered transition metal dichalcogenides (TMDs) have received increasing attention as important and versatile materials for new applications in different sectors
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • is a naturally occurring transition metal dichalcogenide (TMD) and one of the most frequently studied 2D materials. Unlike graphene, MoS2 is a semiconductor, which gives it an increased number of possible applications [11][29]. Our previous first principles study [28] of the interaction of Cu species
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • materials, nanoscale metal chalcogenides (Cu2−xE, E = S, Se, Te), transition metal dichalcogenide nanostructures (e.g., WS2, MoS2), metal-oxide nanoparticles (e.g., WO3), and nanoscale coordination compounds (e.g., Prussian blue nanoparticles) [33][36][37][38]. The photothermal properties of these
PDF
Album
Review
Published 31 Jul 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • at an even more emerging stage of development that can serve as alternative material platforms. These are generally the wide-bandgap group II–VI and III–V materials, such GaN [32][33][34] and ZnO [35][36][37], and low-dimensional van der Waals materials, including the transition metal dichalcogenide
PDF
Album
Review
Published 08 May 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • transition-metal dichalcogenide composites for energy storage applications. Schematic illustration of the synthesis of C-MoS2/rGO composite. (a) SEM and (b) TEM images of pristine MoS2; (c) SEM and (d) TEM images of C-MoS2/rGO; (e) SEM image of MoS2-S and (f) SEM image of C-MoS2/rGO-S; (g, h) HRTEM images of
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • spectroscopy; molybdenum disulfide (MoS2) monolayer; two-dimensional transition-metal dichalcogenides (2D TMDC); Introduction Two-dimensional transition metal dichalcogenide (2D TMDC) materials have drawn wide attention because of their fascinating physical and chemical properties [1][2][3][4][5][6]. Given
  • District, 300072 Tianjin, China Nanchang Institute for Microtechnology of Tianjin University, Weijin Road 92, Nankai District, 300072 Tianjin, China 10.3762/bjnano.10.57 Abstract Real-time monitoring is essential for understanding and precisely controlling of growth of two-dimensional transition metal
  • dichalcogenide (2D TMDC) materials. However, it is very challenging to carry out such studies during chemical vapor deposition (CVD). Here, we report the first, real time, in situ study of the CVD growth of 2D TMDCs. More specifically, the CVD growth of a molybdenum disulfide (MoS2) monolayer on sapphire
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • ][43], and the third is the combination with a catalyst such as NiMo and transition-metal dichalcogenide 2D materials [43][44]. Conclusion We fabricated porous, semitransparent Co3O4 working electrodes of varying thickness using Kirkendall diffusion thermal oxidation in air. The thickness-dependent
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna

  • Haitao Chen,
  • Mingkai Liu,
  • Lei Xu and
  • Dragomir N. Neshev

Beilstein J. Nanotechnol. 2018, 9, 780–788, doi:10.3762/bjnano.9.71

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • Xiaoli Sun Zhiguo Wang School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China 10.3762/bjnano.8.270 Abstract Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide
  • monolayers explored in this work can be used as promising anode materials for lithium ion batteries. Keywords: anode materials; lithium adsorption; lithium diffusion; lithium ion batteries; transition metal dichalcogenide; Introduction Lithium ion batteries (LIBs) have been widely used in portable
  • structure can also affect the energy conversion efficiency, for example in the hydrogen evolution reaction (HER). The basal plane of 2H-MoS2 is inert [30], where that of 1T'-MoS2 is catalytically active for HER [31]. Until now, there is no systematic study on the family of transition metal dichalcogenide
PDF
Album
Full Research Paper
Published 15 Dec 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • Fermi level. Van der Waals materials with a band gap do not suffer from this limitation. Molybdenum disulfide (MoS2) is a member of the transition metal dichalcogenide (TMD) family that belongs to the class of van der Waals materials. Bulk MoS2 has a band gap of 1.29 eV, which increases to 1.90 eV for a
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • in oxygen at temperatures below 400 °C. It has also been shown that the effect of doping is sensitive to the ambient atmosphere. In particular, water molecules affect the doping stability [20][21]. Alongside Gr, the transition metal dichalcogenide MoS2 is one of the stable 2D materials of interest [1
PDF
Album
Full Research Paper
Published 10 Feb 2017
Other Beilstein-Institut Open Science Activities